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LElTER TO THE EDITOR 

Self-duality in solid-on-solid models 

H J F b o p s  
Instituut voor Theoretische Fysica, Katholieke Universiteit Nijmegen, Toernooiveld, 6525 
ED Nijmegen, The Netherlands 

Received 28 November 1985 

Abstract. It is shown that solid-on-solid models for which steps between neighbouring 
sites are limited to at most n adatoms exhibit self-dual points. At these points the amplitude 
of the height-height correlation function is exactly known. This extends a recent result of 
den Nijs for the case n = 1. Some doubts are raised to his assertion that correction to 
scaling terms due to the sine-Gordon operators should be absent at self-dual points. 

The solid-on-solid (SOS) model is well established as a model for crystal surfaces under 
equilibrium growth conditions. The Kosterlitz-Thouless transition that occurs in the 
SOS model corresponds to the roughening transition of the crystal surface (for a review 
see Weeks 1980). At temperatures above the roughening transition the height-height 
correlation function diverges logarithmically as 

( ( h , - h , ) 2 ) % ( ~ K ) - 1  In r. (1) 

The parameter K can be seen as the renormalised interaction strength of an effective 
Gaussian interaction (Kosterlitz and Thouless 1973, JosC et al 1977). 

In general the SOS model is related under duality with the XY model (Knops 1977). 
It is the purpose of this letter to show that for special values of the interaction potential 
the SOS model is in fact self-dual. At these points the value of the renormalised coupling 
strength K is known exactly. It is useful to consider the duality between the SOS and 
X Y  models as a particular consequence of the duality relation for a more general 
model in which both vortices (with vorticity q )  and sine-Gordon operators (favouring 
integral values) are present with fugacity y (respectively z ) .  The partition sum of this 
model is defined by 

x n z N i  e x p ( 2 r i x , ~ , )  fl yMt , .  (2) 

Here ( i , j )  denotes nearest-neighbour pairs on a square lattice and Mi = B m(iJ)  where 
the sum is taken over the four nearest-neighbour pairs surrounding the site i’ of the 
dual lattice. The duality relation for this model is (JosC er a1 1977, Knops 1980) 

(3) 

I L 

Zq( v, y,  2 )  = Zq( c 2, Y )  
with 

m 

exp p ( k ) =  q-”* [ dh exp[V(h)+ihk2~/q] .  
J -m 

(4) 
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Both the SOS model and the XY model occur as special cases of Z,( V, y ,  z). The SOS 

model is obtained by setting z = 1, which forces x, to take integer values, and y = 0, 
which excludes vortices. The XY model corresponds to the opposite case of a 
continuous model ( z  = 0) having vortices with vorticity q = 27r and fugacity y = 1. The 
XY interaction is given by the periodic continuation PV of V defined (for general q )  
by 

exp[PV(x)] = exp[ V(x+ qm)]. ( 5 )  
m 

The duality relation between the SOS model and the XY model is then a direct 
consequence of (3): 

&os( V) = Z2T( v, 091) = Z2T( 1,O) = &m. (6) 

As it is clear that the role of vortices and sine-Gordon operators are interchanged 
under duality it would seem that only models with y = z  can be self-dual. Indeed 
q-state clock models defined by 

Z,.CJPV) = Z,( v, 1,1) (7) 

are known to be self-dual. However, this is not the only possibility since for a special 
choice of the interaction V the fugacity y becomes redundant and the self-duality 
may extend to y = 0, i.e. the SOS models. In the particular case q = 5 this has recently 
been noticed by den Nijs (1985a, b). Here the general case, which turns out to be 
q = 4n + 1, is considered. 

The basic idea is to construct a potential that leads to a diverging core energy for 
the vortices. On a square lattice this is simply achieved by the requirement 

exp V ( h ) = O  for Ihl> n. (8) 
This choice limits steps between neighbouring sites to values 0, *l, . . . , i n  (mod 4). 
Since the core of a vortex on a square lattice consists of four such steps, one concludes 
that a vortex of vorticity q = 4n + 1 cannot occur. The value of the vortex fugacity is 
immaterial and may as well be set equal to zero. Consequently one has for a potential 
that satisfies (8) 

Zq-CdPV) = Zq( v, 1 , l )  = Zq( v, 0,1) =Zsos( V) 

ZSOS( V) = Z , . C L ( m .  (10) 

(9) 
and the duality relation now reads 

Here P? is found by combining (4) and (5) as 

exp[ P?( k)] = q-1’2 exp[ PV(  h )  + ihk27r/q]. 
h = l  

The SOS model is self-dual when exp( P?) = A exp( PV) at the integer values k = 1, . . . , q. 
At first sight this seems hard to achieve in view of the requirement (8) which leaves 
only 2n + 1 Boltzmann weights free to satisfy q = 4n + 1 equalities. However, it is easy 
to see that, due to the fact that (1 1) is a Fourier sum, it suffices to demand that exp(P?) 
satisfies (8). This involves only 2n equations that can therefore be solved to yield (up 
to a factor) a unique solution exp(PV*). This solution is in fact se1f;dual. If it were 
not, exp(P?*) would constitute a second solution since both exp(PV*) and its dual 
exp(PV*) = exp(PV*) satisfy (8). The Boltzmann weights of the self-dual SOS models 
that are found for n = 1, . . . , 7  are given in table 1. The case n = 1 is the result of den 
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Table 1. Boltzmann weights exp PV*(n)  for self-dual SOS models. The exact value of the 
effective Gaussian coupling is shown in the left-hand column. 

K=- l h l = O  1 2 3 4 5 6 7 
4 n + l  

$T 1 0.618 0 0 0 0 0 0 
$?T 1 0.742 0.258 0 0 0 0 0 
ih 1 0.806 0:401 0.097 0 0 0 0 
A V  1 0.844 0.497 0.187 0.034 0 0 0 
5.. 1 0.870 0.566 0.264 0.080 0.012 0 0 
Bn 1 0.889 0.619 0.329 0.127 0.032 0.004 0 
Bv 1 0.902 0.660 0.385 0.174 0.058 0.013 0.001 

Nijs (1985b). As noticed in this reference the self-dual points in the SOS model have 
the interesting property that the value of the effective Gaussian coupling K is exactly 
known at these points. The reason is that under duality, sine-Gordon operators are 
mapped onto vortices with vorticity q = 4n + 1. The scaling indices of both operators 
can be expressed in the effective Gaussian coupling as X s ,  = r/ K (respectively 
X ,  = Kq2/4 r )  (Kadanoff 1979). At the self-dual point these indices must be equal 
which implies K, = 2r / (4n  + 1). Strictly speaking this conclusion is only valid provided 
the model is known to be in its rough phase. There is however no doubt that this is 
indeed the case because all the SOS models in table 1 represent surfaces that are 
substantially weaker than the roughening point of the restricted (i.e. exp[ V( h ) ]  = 0, 

1) SOS model estimated at exp[ V ( l ) ]  1: 0.53 (Luck 1981). Moreover this conclusion 
is consistent with the fact that the predicted Gaussian couplings K,  are located below 
the roughening value K, = ;T. 

The self-dual SOS models decrease in coupling strength as n increases (see table 
1). For n > 5 these models are well represented by the Gaussian form 

exp[PV*(h)]= exp(-fK,h2) (12) 

with an overall deviation of about 1%. On the one hand this fact can be understood 
from the way in which PV* is constructed: in the continuum limit the Gaussian form 
(12) is the function with fastest decay that leaves (11) invariant. On the other hand 
it is also consistent with the renormalisation picture according to which in the high 
temperature limit Gaussian couplings in the SOS model remain almost constant while 
the sine-Gordon fugacity z is renormalised to zero (JosC et a1 1977). 

I am not convinced by the arguments given by den Nijs (1985b) that the effective 
value of the sine-Gordon fugacity z should already be zero for self-dual SOS models. 
He argues as follows: an SOS model that satisfies (8) may be seen as a clock model 
for which the vortices are effectively forbidden ( y = O ) ;  under duality vortices are 
mapped onto sine-Gordon operators so that after duality z=O. As the model is 
self-dual both y and z should be equal to zero. The error in this reasoning is that the 
model is only self-dual provided it is discrete both before and after duality. This is 
clear since PV* is left invariant by (11) only for discrete values of the argument k. 
Phrased more formally one does have, using the redundancy of the vortex fugacity 
(respectively duality), 

(13) Z,( v*, 0,1) = Z,( v*, Y,  1) = Z,( ?*, 1, y )  
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for general y. However one may continue to write 

Z,(O*, l , y ) = Z , ( V * ,  1 ,y )=Zq(V* ,O,y )  (14) - 
just in case y = 1 since V* = V* at integer values only. The conclusion Z,( V*,  0,1) = 
Z,( V*, 0,O) is therefore not justified. This means that a finite-size calculation should 
in principle show corrections to scaling both from the sine-Gordon operator and from 
the interaction shape. The fact that the former (which are asymptotically dominant) 
are not seen in the finite-size calculation for q = 5 (den Nijs 1985b) is probably due 
to the relatively small sizes (up to L = 10) considered. This belief is further strengthened 
by the fact that corrections to scaling from the sine-Gordon operator is also not found 
for potentials V f  V*. 
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